Муниципальное бюджетное общеобразовательное учреждение «Погореловская средняя общеобразовательная школа Корочанского района Белгородской области»

«Согласовано»	«Согласовано»	«Утверждаю»
Руководитель МО	Заместитель директора	Директор МБОУ
Угор Кощина Е.А.	школы по УВР МБОУ	«Погореловская СОШ
Протокол № 5 от	«Погореловская СОШ	Корочанского района»
•	Корочанского района»	Черкасов А.Е.
« 14 » _ шюна 2017г	И Цуц Н.В.	Мриказ № 199 от
	« 15 " инония 2017 г.	asycre 2017 r.
		Benning Moropeno Ckan 2 2 2 2
	,	COM, Salar
		Suom & So
		A Se a Mymmy a say

РАБОЧАЯ ПРОГРАММА

элективного курса по физике

«Фундаментальные эксперименты в физической науке» для учащихся 10-11 классов

Пояснительная записка

Рабочая программа элективного курса «Фундаментальные эксперименты в физической науке» является частью основной образовательной программы среднего общего образования и разработана на основе следующих документов:

- 1. Приказа Министерства образования и науки РФ от 3 июня 2011 года №1994 «О внесении изменений в федеральный базисный учебный план и примерные учебные планы для образовательных учреждений Российской Федерации, реализующих программы общего образования, утвержденные приказом Министерства образования Российской Федерации от 9 марта 2004 г. №1312».
- 2. Программы элективных курсов. Физика. 9-11 классы. Профильное обучение/ сост. В.А.Коровин.-3-е изд., стереотип.- М.: Дрофа, 2007.-125, (Элективные курсы). Программа элективного курса «Фундаментальные эксперименты в физической науке»/Авторы: Н.С.Пурышева, Н.В.Шаронова, Д.А.Исаев

Цель курса:

• углубление и расширение представлений учащихся об экспериментальном методе познания в физике, о роли и месте фундаментального эксперимента в становлении физического знания, о взаимосвязи теории и эксперимента.

Выполнение учащимися некоторых фундаментальных опытов c приборов физических использованием позволяет внести вклад В экспериментальных формирование них умений использование компьютерного моделирования дает возможность сформировать у учащихся умения выполнять исследования с помощью компьютера, а также целый ряд общеучебных умений.

Таким образом, в ходе изучения данного элективного курса создаются условия для решения таких общеобразовательных задач, как

- приобретение учащимися знаний;
- воспитание учащихся;
- политехническое образование;
- развитие речи, мышления, восприятия, способностей, интересов и мотивации.

«Фундаментальные эксперименты в физической науке» относится к предметной области «Физика» и рассчитан на 34 часа (по 1 часу в 2 недели) за 2 года обучения — в 10 и 11 классах.

Требования к уровню подготовки выпускников:

После изучения курса учащиеся должны:

знать:

- (на уровне воспроизведения) имена ученых, поставивших изученные фундаментальные опыты, даты их жизни, краткие биографические данные, основные научные достижения;
- понимать роль фундаментальных опытов в развитии физики; место фундаментальных опытов в структуре физического знания; цель, схему, результат и значение конкретных изученных фундаментальных опытов;

уметь:

- выполнять определенные программой исследования с использованием физических приборов и компьютерных моделей;
- демонстрировать опыты;
- работать со средствами информации (осуществлять поиск и отбор информации, конспектировать ее, осуществлять ее реферирование);
- готовить сообщения и доклады;
- выступать с сообщениями и докладами;
- участвовать в дискуссии; подбирать к докладам и рефератам иллюстративный материал,
- оформлять сообщения и доклады в письменном виде.

Работа учащихся в элективном курсе оценивается с учётом их активности, качества подготовленных докладов и выступлений.

Содержание изучаемого курса

1. Эксперимент и теория в естественно-научном познании.

Цикл естественно-научного познания. Теоретический и экспериментальный уровни познания. Теоретические и экспериментальные методы познания, их место в цикле познания, связь между ними. Роль эксперимента в познании. Фундаментальные опыты по физике, их роль в науке и место в процессе естественно-научного познания.

2. Фундаментальные опыты в механике.

Зарождение экспериментального метода в физике. Роль фундаментальных опытов в становлении классической механики. Опыты Галилея по изучению движения тел. Мысленный эксперимент Галилея и закон инерции. Закон

всемирного тяготения Ньютона и опыт Кавендиша. Опыты Гюйгенса по изучению колебательного движения. Эмпирический базис как структурный элемент физической теории.

3. Фундаментальные опыты в молекулярной физике.

Возникновение атомистической гипотезы строения вещества. Опыты Броуна по изучению поведения взвешенных частиц. Опыт Рэлея по измерению размеров молекул. Опыты Перрена по измерению массы молекул и определению постоянной Авогадро. Опыт Штерна по измерению скорости Экспериментально молекул. И теоретически полученное распределение молекул ПО скоростям. Окончательное становление молекулярно-кинетической теории строения Опыты вещества. исследованию свойств газов (опыты Бойля, Гей-Люссака, Шарля). Опыты Румфорда. Опыты Джоуля по доказательству эквивалентности теплоты и работы. Фундаментальные опыты как основа научных обобщений.

4. Фундаментальные опыты в электродинамике.

Опыты Кулона по электростатическому взаимодействию. Опыты Рикке, Иоффе, Милликена, Мандельштама, Папалекси, Толмена, Стюарта как основа электронной теории проводимости. Опыты Ома, их роль в установлении законов постоянного тока. Опыты Ампера, Эрстеда и Фарадея по электромагнетизму. Опыты Герца по излучению и приёму электромагнитных волн. Фундаментальные опыты как подтверждение следствий теории.

5. Фундаментальные опыты в оптике.

Краткая история развития учения о свете. Опыты, послужившие основой возникновения волновой теории света. Опыты Ньютона по дисперсии света. Опыты Ньютона по интерференции света. Опыты Юнга. Опыты по поляризации света. Проблема скорости света в физической науке. Измерение скорости света: астрономические и земные методы.

6. Фундаментальные опыты в квантовой физике.

Зарождение квантовой теории. Экспериментальное изучение теплового излучения. Опыты Столетова и Герца по изучению явления и законов фотоэффекта. Опыты Лебедева по измерению давления света. Опыты Резерфорда по зондированию вещества и модель строенияатома. Опыты Франка и Герца и модель атома Бора. Фундаментальные опыты по формированию нового стиля научного мышления.

Демонстрации

- 1. Различные виды механического движения.
- 2. Свободное падение.
- 3. Колебательное движение маятников.

- 4. Модель броуновского движения.
- 5. Модель опыта Штерна.
- 6. Электризация тел.
- 7. Взаимодействие электрических зарядов.
- 8. Взаимодействие проводников с током.
- 9. Взаимодействие проводника с током и магнита.
- 10. Явление электромагнитной индукции.
- 11. Дисперсия света.
- 12. Опыты по интерференции и дифракции света.
- 13. Поляризация света.
- 14. Явление фотоэффекта и законы фотоэффекта.

Лабораторные работы

- 1. Исследование закономерностей броуновского движения с использованием компьютерной модели.
- 2. Измерение размеров молекул.
- 3. Исследование взаимодействия электрических зарядов.
- 4. Исследование явления электромагнитной индукции.
- 5. Измерение скорости света. Изучение явления дисперсии.
- 6. Исследование явления интерференции.
- 7. Исследование явления дифракции.
- 8. Исследование явления фотоэффекта.
- 9. Изучение строения атома, моделирование опытов Резерфорда.

Лабораторные работы и демонстрации могут проводиться с помощью компьютерных моделей и с использованием компьютерного моделирования.

Учебно-тематический план

№	Тема урока	Число
занятия		часов
1	Эксперимент и теория в естественно-научном познании.	1
	Эксперимент в физике. Эксперимент как подкрепление теории	
2	Зарождение экспериментального метода в физике. Опыты	1
	Галилея по изучению движения тел.	
3	Мысленный эксперимент. Мысленный эксперимент Галилей и	1
	закон инерции.	
4	Закон всемирного тяготения. Ньютон и закон всемирного	1
	тяготения. Опыт Кавендиша.	
5	Опыты Гюйгенса по изучению колебательного движения.	1
	Опыты Гюйгенса	

6	Эмпирический базис как структурный элемент физической теории	1
7	Возникновение атомистической теории строения вещества	1
8	Опыты Броуна. Опыты Рэлея. Опыты Перрена.	1
9	Теория броуновского движения	1
10	Опыт Штерна по измерению скорости движения молекул	1
11	Распределение молекул по скоростям. Теоретически	1
	полученное распределение молекул по скоростям.	
	Экспериментально полученное распределение молекул по	
	скоростям.	
12	Окончательное становление молекулярно-кинетической	1
	теории строения вещества.	
13	Исследование свойств газов.	1
14	Изотермический процесс. Изобарный процесс. Изохорный	1
	процесс	
15	Опыты Джоуля	1
16	Фундаментальные опыты как основа научных обобщений	1
17	Опыты Кулона.	1
18	Электростатическое взаимодействие. Опыты по	1
	электростатическому взаимодействию.	
19	Опыты Рикке. Опыты Мандельштама.	1
20	Опыты Иоффе. Опыты Папалекси.	1
21	Опыты Толмена. Опыты Стюарта.	1
22	Электронная теория проводимости.	1
23	Опыты Ома. Установление законов постоянного тока.	1
24	Опыты Ампера. Опыты Эрстеда. Опыты Фарадея.	1
25	Опыты по электромагнетизму	1
26	Излучение и приём электромагнитных волн. Опыты Герца.	1
	Фундаментальные опыты по излучению и приёму	
	электромагнитных волн	
27	Фундаментальные опыты как подтверждение следствий	1
	теории.	
28	Краткая история развития учения о свете. Опыты по волновой	1
	теории света. Опыты Френеля. Опыты Юнга.	
29	Опыты Ньютона по дисперсии света. Опыты Ньютона по	1
	интерференции света. Опыты Юнга в свете волновой теории.	
20	Опыты по поляризации света.	1
30	Проблема скорости света в физической науке. Измерение	1
	скорости света. Астрономические методы измерения скорости	
21	света. Земные методы измерения скорости света.	1
31	Зарождение квантовой теории. Экспериментальное изучение	1
	теплового излучения. Опыты Столетова и Герца по	
	фотоэффекту. Опыты Лебедева по измерению давления света.	

32	Опыты Резерфорда. Зондирование вещества и модель строения	1
	атома.	
33	Опыты Франка и Герца. Модель строения атома Бора.	1
34	Фундаментальные опыты и формирование нового стиля	1
	научного мышления.	

Формы и средства контроля

В зависимости от степени лёгкости и быстроты обучаемости учащихся, а также структуры изученного материала, в каждом отдельном случае применяются следующие формы и методы контроля и самоконтроля:

- → устный фронтальный опрос (от 5 до 25 мин.);
- → физический диктант (от 3 до 7 мин);
- → лабораторная работа (от 10 до 40 мин);
- → самооценка работы учащегося;
- → оценивание группой экспертов-учащихся;
- → оценивание одноклассником.
- → доклады, рефераты, презентации

Примерные темы докладов и рефератов

- 1. Моделирование в физике.
- 2. Галилей основоположник экспериментального метода исследования в физике.
- 3. Фундаментальные опыты и эволюция физической картины мира.
- 4. Фундаментальные опыты и развитие электродинамики.
- 5. Фундаментальные опыты и развитие взглядов на природу света.
- 6. Фундаментальные опыты в структуре физической теории.
- 7. Ньютон и Гук: противостояние гениев.
- 8. Мифы и реальность из жизни Галилея.

Учебно-методическое обеспечение образовательного процесса

Литература

- 1. «Физика», 10 класс. Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Гутник. «Просвещение», 2017.
- 2. «Физика», 11 класс. Г.Я.Мякишев, Б.Б.Буховцев, В.М.Чаругин, «Просвещение, 2013.
- 3. «Фундаментальные эксперименты в физической науке». Н.С.Пурышева, Н.В.Шаронова, Д.А.Исаев. Москва. «БИНОМ». 2005.

4.

Материально-техническое обеспечение образовательного процесса

Для реализация учебного предмета есть в наличии кабинет физики. *Оборудование учебного кабинета:*

- Набор лабораторный "Электричество"
- Лабораторный комплект по механике (базовая комплектация)
- Лабораторный комплект по молекулярной физике и термодинамике Лабораторный комплект по квантовым явлениям Технические средства обучения: проектор, ноутбук, Учебно-наглядные пособия (CD)
- Квантовая физика
- Физика. Видеодемонстрации. 10 класс
- Физика. Видеодемонстрации. 11 класс
- Электромагнитные волны
- Ядерная физика
- Геометрическая и волновая оптика
- Ученический эксперимент по физике

Inpektop MBOY «Погореловская A.E. Черкасов A.E. Черкасов MBOY» (Погореловская В 1.08.2017)

и скреплено печатью воссиев Мистев